I see that all members are present. I therefore call the meeting to order.
First of all, I'd like to apologize to the witnesses. We are starting the meeting nine minutes late because of a vote in the House.
Welcome to the fourteenth meeting of the House of Commons Standing Committee on Industry and Technology.
Pursuant to Standing Order 108(2) and the motion adopted by the committee on Tuesday, March 1, 2022, the committee is meeting to study quantum computing.
Today’s meeting is taking place in a hybrid format, pursuant to the House order of November 25, 2021. Members may attend in person or by Zoom. Those who are attending in person know the public health rules in place, so I am asking them to behave accordingly.
Today we are pleased to welcome Dr. Raymond Laflamme, professor of physics, Canada Research Chair in Quantum Computing at the University of Waterloo.
We also welcome Dr. Alireza Yazdi, chief executive director of Anyon Systems, Dr. Philippe St‑Jean, chief executive officer of Nord Quantique, and Mr. Rafal Janik, head of product at Xanadu Quantum Technologies.
Thank you for being with us.
Dr. Laflamme, you have the floor for about six minutes.
I thank the members of the committee for their interest in the field of quantum information and related technologies. I also thank them for inviting me to say a few words on the subject. This committee is really important for the Government of Canada to build on its early success in this area.
On Friday, my colleagues Alexandre Blais, Norbert Lütkenhaus and Barry Sanders gave you an introduction to quantum information. So I won't repeat what they said, because they did an excellent job. However, I would like to emphasize two things that were mentioned on Friday that I think are really important in understanding and situating quantum information and technologies in Canada.
First, the discipline of quantum information is broad. It's about how the universe we live in behaves on a microscopic scale, it's about quantum cryptography in the context of national security, and it's about the development of technologies for extracting natural resources or solving health-related problems, for example. The expertise gained in quantum information could therefore represent an economic benefit in the 21st century.
Second, quantum information initiatives in Canada and elsewhere in the world are really moving at the speed of a marathon, not a sprint. Although the discipline is still young, the race is already on.
[English]
Quantum information science and technology is an incredible opportunity for Canada. We have been successful at putting Canada on the international map in the last 20 years, but we cannot sit on our laurels. The late Tom Brzustowski, past president of NSERC, whom I met in the early 2000s and who became one of my mentors, used to quote an American technologist who said again and again that Canada never misses an opportunity to miss an opportunity.
I hope that with quantum we will prove him wrong. This can happen only if there is a team effort. That includes the community, of course, from the government, industry, and academia, but also everybody who is around the table today.
[Translation]
I will now tell you a little about myself. I was born in Quebec City. I did a bachelor's degree at Laval University, a doctorate at Cambridge University under the supervision of Dr. Stephen Hawking, and a Killam postdoctoral fellowship at the University of British Columbia. I returned to Cambridge for two years before spending ten years at Los Alamos National Laboratory in the United States.
In 2001, I was recruited by Dr. David Johnston and Dr. Mike Lazaridis to build the Institute for Quantum Computing in Waterloo, with the support of the Canada Research Chairs and the Canada Foundation for Innovation, or CFI, programs, and to put Canada on the map in this area.
[English]
I led the institute until 2017, and that was for 15 years. The goal was to develop a multidisciplinary institute to push the boundaries of science and develop corresponding technologies.
The institute had the goals of becoming a world leader in research in quantum computing, beginning to develop a workforce that understands and can develop quantum technologies and to communicate the science and engineering to a broad audience. The institute, called IQC for short, is one of the pillars of the quantum valley ecosystem that has been built for the last 20 years.
The other partner organizations are the Perimeter Institute, the quantum-nano fabrication facility, the conformative quantum technologies program from the Canada first research excellence fund, the Ideas Lab, which prototypes emerging quantum technologies and, finally, Quantum Valley Investments, which helped commercialize the fund and the start-ups that come out of the research.
I believe that building ecosystems is important to sustain the path from quantum ideas to quantum technologies with societal impact. The path is a long chain with many links, and any broken parts bring challenges to reach the end point. As you heard on Friday, the concept of quantum ecosystems has also been adopted by Sherbrooke and Calgary, and there are hints that Vancouver will also build its own in the near future. I believe that an important role of the national strategy will be to nurture and help develop them.
I have also been the director of the quantum information program at CIFAR, the Canadian Institute for Advanced Research for 15 years. There the goal was to study fundamental aspects of quantum computing. The program brought two dozen of the best researchers in quantum information both in Canada and across the world. The program is still running, and it is a success being led by Aephraim Steinberg.
The quantum community also put together an NSERC network called the nano innovation platform in 2006. The program, Quantum Works, brought industry, government and academic researchers together, and can be thought of as the grandparent of the present national strategy.
I'd like to finish by commenting on points where the national quantum strategy should have some focus. One, de-risk quantum technologies or help to do so; two, be strategic and make choices, as there are many opportunities but the resources are, as usual, limited; three, de-silo our environment to develop a true quantum ecosystem, and we heard that on Friday. Find more ways to facilitate industry, government and academia interaction.
There are already many of these interactions. In fact, my colleagues around the table in the quantum community have some. 1QBit is involved with both Sherbrooke and Waterloo. Anyon Systems are using the Waterloo lab facility. Xanadu has hired many Waterloo grads on its scientific board. Many of these interactions are ad hoc, and strengthening them will increase the chance for Canada to score many goals in the quantum game.
Fourth, develop and maintain the infrastructure to develop quantum technologies, like the fabrication they mention in Waterloo, but there's also one in Sherbrooke and one in Vancouver. Be cognizant and plug the holes in the present funding programs. There needs to be lots of interaction between this national strategy and the community.
Finally, develop talent, including leadership that is cognizant of the field, and by this I mean both in the quantum community itself and on the government side.
It was a surprise when I moved from the U.S. to here to realize that program managers in Canada seem to be a lot more offhand than what I've seen both in the U.S. and in the UK.
I'd like to finish by saying that quantum information science and technology is an incredible opportunity for Canada, and let's capitalize on it.
Thank you.
:
Thank you, Mr. Chairman and distinguished members of the committee.
[Translation]
Thank you for inviting me to appear before the committee.
My name is Alireza Yazdi. I am the founder and chief executive director of Anyon Systems. I am a first-generation immigrant, a scientist and an entrepreneur.
[English]
I graduated from McGill with a Ph.D. in engineering, so I'm an engineer by training, not a physicist, with all due respect to other physicists on the panel. I have over 15 years of experience in high-performance computing, out of which the last seven years have been almost entirely focused on building a quantum computer.
Besides my technical work and business, I'm also a student of history and geopolitics. In particular, given my day job, I'm very interested in disruptive technological trends that have geopolitical ramifications.
Before I formally introduce Anyon Systems and talk about what we do, I will take a few moments to provide some background and context for the discussion ahead.
There is a saying in the tech industry, that “data is the new gold”. Companies like Google and Facebook compete on mining this gold. They spend vast resources on data collection, indexing and storage, but data becomes really valuable when it is processed, when it is analyzed. As you know, there is an exponential growth of global data volume, and with that, there is an ever-increasing need for computational power. I do not use the phrase “computational power” lightly, and I do not use it in a mere technical context. When I say “computational power”, I mean power to process data, power to develop new technologies, power to make better decisions and power to stay ahead of the competition. This power is strategic in nature.
Given the data volume and the strategic value of the computational power I mentioned, there is an acute need for new technologies, especially new types of hardware, that can expand our ability to process data, explore nature, invent new technologies and keep our nation safe. Quantum computing is one of the candidate technologies that promises significant computational power, but for only a certain class of problems. Please note that not every problem or every application can necessarily be accelerated using quantum computers.
Let me be more clear. A quantum computer is not a stand-alone computer. A quantum computer is a hardware accelerator. Its job is to accelerate performing some computations for a class of problems that are deemed very valuable.
Having covered that background, let me share with you some background about our company. Anyon Systems was founded in 2014, right around the time that Google and IBM started their quantum hardware effort. In fact, despite being barely eight years old, it is one of the oldest quantum computing hardware companies in the world. Our mission is to develop and commercialize logic-based universal quantum computers.
Over the past eight years, Anyon has developed the full vertical hardware stack of superconducting quantum computers. In fact, to my best knowledge, we are the only company in the world that makes all major components of a superconducting quantum computer in house, including the superconducting quantum processor itself, the cryogenics systems, reaching temperatures of only a few millikelvins above absolute zero, the control electronics and the software stack to use the machine.
Developing such unique expertise has enabled us to be largely independent from foreign suppliers and make sure that Canada will have indigenous and domestic capabilities. Our quantum computing systems are almost entirely manufactured and assembled at our facilities here in Montreal and in Waterloo. We have built valuable partnerships with key stakeholders in government and academia, and we strive to help build ecosystems by providing hardware access to Canadian researchers.
In 2020, we received a contract through the build in Canada innovation program to deliver a quantum computer for testing by Defence Research and Development Canada, DRDC. Despite the challenges posed by the COVID-19 pandemic, I'm glad to inform you that the machine was completed and went online in 2021. We are proud to announce that this machine is Canada's first gate-based quantum computer. The key performance metrics exceed those of some of the most well-known actors in the industry, and on many key metrics it is second only to Google.
Last fall, I also had the pleasure of delivering a series of lectures to the talented researchers of DRDC and other government agencies. The goal of this lecture series was to help government researchers adopt quantum computing and start doing great research in the field.
More recently, we received a second order to deliver a state-of-the-art machine to one of Canada's largest high-performance computing centres. This machine will enable Canadian researchers, both in academia and industry, to have early access to a highly sought-after technology, enabling them to further build novel algorithms and perform cutting-edge research.
While we currently deliver small- to intermediate-scale machines that are tailored for early adopters, Anyon's overarching goal is to deliver what we called a utility-scale quantum computer, a quantum computer that provides computational value more than its cost.
Our team has developed a detailed technological road map to that effect, and we have been inventing very novel technologies to reach our milestones.
Before I conclude my remarks, I would be remiss if I did not thank the kind and generous support that we have received over the past few years from the National Research Council of Canada, especially through IRAP; the Institute for Quantum Computing at the University of Waterloo, especially the management and staff of Waterloo's quantum-nano fabrication facility; and the Ministère de l'Économie et de l'Innovation here in Quebec.
Once again, I thank you for this invitation and I look forward to our discussion.
I would like to thank the members of the committee for the opportunity to speak with you today.
My name is Philippe St‑Jean, and I am the chief executive officer and co‑founder of Nord Quantique, a company that designs and manufactures an error-tolerant quantum computer. We come from the centre of excellence in quantum technology at the Université de Sherbrooke, the Institut quantique. It's headed by Dr. Alexandre Blais, who appeared before this committee last week.
Several of the witnesses who have presented their views to this committee have already made it clear that Canada has an interest in promoting the development of its expertise in quantum computing. I will therefore focus on the aspects that specifically concern the development of these computers within Canadian companies already engaged in this field.
As mentioned earlier, Canada can be proud of the quality of academic research in quantum computing that is taking place in our centres of excellence. The challenge now is to ensure that this expertise also translates into industrial and commercial success, and thus to establish what should be the federal government's roadmap in this direction.
Our needs can be broken down into two points.
Obviously, we need access to the necessary funds to develop this technology, especially since we are competing with ambitious programs put forward by other governments elsewhere in the world.
More importantly, our future success will depend on the support of the ecosystems surrounding the centres of excellence in quantum technology from which we are emerging. Leased access to state-of-the-art infrastructure and laboratories, the specialized equipment there, the experts who work there and their knowledge, and the young talent who develop there and grow our ranks is key to success. For us, this is the Canadian approach. This collaboration has allowed us to remain competitive despite the considerable private sector investment in our international competitors.
The crucial contribution of these centres of excellence was brilliantly described and highlighted by Dr. Laflamme at a recent conference organized by NanoCanada, Quantum Days. I invite the members of the committee to watch or rewatch this presentation.
Let's face facts about the Canadian commercial quantum sector. We all have a difficult road ahead of us. All companies developing quantum computers are facing a dry spell in which they must develop the technology without being able to sustain the effort with sufficient short-term revenues. It is therefore critical that the government act and help us, either directly as a first user of the prototype computers we are developing, or as an intermediary by facilitating its access to the early user and scientific community in Canada.
It is also important that this support be effective and agile. Unfortunately, the constraints of existing programs can sometimes create excessive delays.
The risk, for example, is that in the time between the submission of a good project, its evaluation, its approval and access to funds, the project itself may have lost relevance, as things move very fast in this sector.
The scale at which these projects are funded should be comparable to that enjoyed by our international competitors in their respective countries.
Finally, we also need to help change the mindset of Canadian private investors so that they understand that they have everything to gain by placing part of their investments into longer-term breakthrough technologies. That's how we need to think.
I'd like to end on an optimistic note. Last week, Dr. Alexandre Blais emphasized to this committee the importance of managing expectations, noting that we cannot do everything in Canada and that we must therefore focus our efforts intelligently. For us, this means that it is important to support our centres of excellence, but above all to foster the development of ecosystems around these centres, which in turn provide fertile ground for emerging Canadian companies in the quantum sector.
I want to emphasize one important point. This management of expectations does not mean that Canada is limited to a background or ancillary role in the development of the first error-tolerant commercial quantum computers. Canada is truly in this race and is in a very good position. Based on the current situation and status, we can confidently say that the first commercially viable quantum computers will emerge in two countries, Canada and the United States. For this scenario to become a reality, we must act now to support this transition from scientific research to the industrial and commercial development of this technology.
:
Thank you, Mr. Chairman.
I would like to thank the committee for inviting me here and for giving me the opportunity to speak on what is a very important topic, namely, how do we keep the strategic lead we have in quantum technologies here in Canada into the future?
I and my colleagues, many of whom have spoken to the committee already, have really addressed the fact that we've enjoyed close to 25 years now of really fantastic support and funding across quantum sciences and quantum information, and now even through the commercialization of quantum technologies. The end goal of this has really been identified as building and developing a large-scale quantum computer. We've heard a couple of different names for this economically viable quantum computer, but really what we're referring to is a quantum computer with millions of physical qubits, a technology that can solve the world's most challenging problems. This is the goal of many other people that you may have heard from already.
Xanadu is on this path. Our mission is to build fault-tolerant universal quantum computers. We are now a six-year-old company based in the heart of Toronto, with over 120 employees working on this mission. The majority of us are focused on building the fundamental photonic hardware to deliver this quantum computer, but we also work on the software stack, which is really important in making sure we get full adoption of this technology as it becomes viable.
To date, we have stood up online seven unique quantum computers across 15 different quantum processing unit generations. We've gone through 15 different manufacturing cycles with partners across the world. All of this is developed directly in our Toronto facility, which is the world's most advanced nano-photonics facility.
Approximately every six months, we are doubling the qubit count, increasing exponentially the computational power of a quantum computer, but it is important to note that these quantum computers are still far away from delivering on that true economic value. We believe the photonics platform has a unique opportunity here over some other approaches to be able to do this, but of course the jury is still out, and we do not believe this will be a winner-take-all scenario.
The reason that photonics represents such a unique opportunity for quantum technologies is that it's already a technology that is well understood in our telecommunications and data communications world. The chips that we develop are easily manufacturable at scale, which is one of the things you will need to develop a large-scale, fault-tolerant quantum computer.
They also operate at room temperature. Ninety per cent of our current system operates at 20°C, which means you're able to iterate and develop a lot faster and more cheaply. Not unique to us, but definitely with my colleagues at Nord Quantique, different architectures provide unique opportunities for some of the biggest challenges in correcting errors and ensuring that quantum computers are fault-tolerant.
With all of this put together, I will maybe highlight for the committee that there are many different approaches to building a quantum computer. Each comes with its own advantages and disadvantages. I'd also like to mention that we have one of the leading software platforms out there, in PennyLane. This is an open-source, general-purpose quantum computing tool that is competing right now on par with those from IBM, with Qiskit, and from Google, with SIRC.
Our approach is a bit different. We've taken a fully community open-source approach. Not only do we have corporate partners that are co-developing this tool with us; we also have academics across Canada and across the world. As of this year, it's also become fundamental coursework across a few universities. We're working with the Quantum Algorithms Institute in British Columbia to also ensure that they'll be able to provide further training and resources for the workforce as we continue to build it.
There's one final thing I'd like to point out about our core approach to building a quantum computer. As it is based on photonics, it also offers unique opportunities for quantum sensing and quantum communication. Today we have a test bed network that's been deployed for quantum communication and quantum key distribution here in our lab in Toronto. We've also been developing quantum sensing solutions for the National Research Council through the Innovative Solutions Canada project.
With that, I'd like to thank the committee one more time. I'd be pleased to answer any questions the committee may have.
:
The emerging companies that are dedicated to quantum computing and that are trying to design and build a quantum computer need financial resources, but also the support of an ecosystem. You have to understand that it's not easy to build a quantum computer. It is a very difficult task for these companies.
This is in contrast to what we see in other sectors, such as artificial intelligence, or the software-as-a-service model, or SaaS. One can imagine many emerging companies in these areas starting their business in a garage. However, the same is not at all possible in quantum computing.
You need access to this expertise. There is no doubt that we benefit from our strategic positioning in the Sherbrooke ecosystem. We need the expertise of the Institut quantique at the Université de Sherbrooke.
We are looking at three poles. At present, we are conducting activities at the Institut quantique at the Université de Sherbrooke. Our processors are manufactured at the Institut interdisciplinaire d'innovation technologique, which does microelectronics prototyping. This institute, which is not very far from here, is attached to the Université de Sherbrooke. We are also thinking of eventually using the facilities at the MiQro Innovation Collaboration Center, or C2MI, in Bromont, which provides prototyping tools, but of an industrial nature. This would allow us to have industrial quality tools.
This access is essential for us. This is how we operate at present and it allows us to move forward. It is obvious that we could not fund this infrastructure ourselves. We are happy to rent this equipment and contribute our expertise to this community. If we didn't have this whole ecosystem supporting us, I don't see how we could do it.
:
Thank you. It's a very good and important question.
I will give you the answer to how I recruited people for the Institute for Quantum Computing. You need to have a vision of what you want to do, so that the people you are trying to attract know that they are not going to come to a place where they are on their own, doing their little piece of work; they'll be supported by colleagues, students and post-doctoral fellows who can help them achieve the goals they want to.
You also need resources to do this, so if you hire a theoretician, it's relatively easy without too much in the way of resources, but as you've heard from Dr. Yazdi about building a fabrication facility, this doesn't come cheaply. Fortunately, Canada has been leading and helping to provide fabs that are for research, and maybe Dr. Yazdi could have commented on the difference between a fab that you do for research purposes and a fab that you do for production purposes.
For research purposes, you do not have to have a yield that is extremely high; you just want to have devices from time to time that have the right properties. However, if you want to commercialize and sell this, the yield has to be very high, and that's another ball game. Today, for $50 million to $100 million you can have a research fab. If you want to have a fab for commercialization, that goes into the hundreds of millions—if not the billions, certainly if you look at the Intel-type fab—so the cost there is depending on the purpose.
If you want to attract people, you need to have the resources, so having a vision, having a community and having resources are the three most important things. I'll add another one, which is to think outside the box. What I mean by this is, nowadays in the world in which we live, usually, when you hire a person they have a partner who is as smart as they are, so then you have to help them find a job and do various things or establish their family somewhere. That is where people from the committee, like you, can help. It means if you attract somebody from outside, they need a visa; they need support and a certain amount of certainty that they will be able to succeed in what they do.
What I have done in the past is talk to my local MP and ask them to help me to recruit people to come to Canada. I can tell you that 20 years ago the field was a lot easier and much less competitive. It was just the beginning, but today it is incredibly competitive. I see my three colleagues here, and they know what I mean about when you try to attract a really good person to come and join. The success is not 100%, and this is normal when it is highly competitive, but if we do it and we do it as a team effort, I think we can succeed.
:
This is again an excellent question and a hard one to answer.
On the first part—why we need to have international collaboration—it's that we have very smart people in Canada, but we are only a small proportion of the population of the rest of the world, and there are very smart people around the world. We can take advantage of their knowledge. By adding collaboration, typically on the research side, that helps very much.
Once you start the commercialization, things become a bit more complex, because then you may have both national security issues and also IP protection involved. We know that around the world there are different countries that are very aggressive in learning about what we're doing here in Canada, so we have to be sure that we are alert.
That's another thing I've learned in working in Canada. In fact, in working at a national lab in the U.S., security concerns definitely were something that was kind of up there. When I arrived here in Canada in 2000, there was very little, although I would like to thank people at CSIS and CSEC for their help in ensuring that what we do in Canada is protected in the right way.
:
Absolutely, I would echo what has already been said.
On the talent side, we've experienced a bit of a different situation. We've been incredibly lucky that we've been able to bring over 60% of our workforce through programs like the global talent stream. In fact, between the quality of life in Canada and the relatively open immigration policy, we've been able to out-compete a lot of our peers in the United States for talent.
On the funding side, I want to add a comment about the scale of funding that we're talking about. To date, we've been incredibly lucky and we've been able to raise over $175 million Canadian for the goal of building a fault-tolerant universal quantum computer. That's probably about 20% of what is needed to deliver this truly transformative machine. There becomes a really big security and strategic question. There was a question earlier around how we keep this IP within Canada. Probably one of the biggest threats is that once companies get large enough and successful enough, they'll need that outside equity, that outside money, in order to come in and bring them over the goal line.
I'm not sure what the solution is, but definitely one problem we need to solve is how we move past the early stages, the academic side, to the true commercialization side, to be able to reap the benefits of all the investment that has already been put into quantum technologies.
:
Thank you very much for the excellent question.
I'll start with the second part of the question, which is the supply chain, because supply chain is what keeps me awake at night, and I mean it in a literal manner. These days, our [Inaudible—Editor] chips are 52 weeks back-ordered, so this is very serious.
Right now in the United States they're looking very hard at the supply chain of quantum computing. This was one of the reasons that Anyon, back in 2016, decided that they were going to make every component of a superconducting quantum computer internally. For example, there are only two companies that are making commercial-grade cryogenics systems. One is in Finland and the other one is in the UK. They can easily be bought by other competitors, and that's very detrimental to the future of our industry.
What I recommend that the government do is the same exercise that our partners in the U.S. are doing. First, choose what priority technologies you want to invest in, try to secure them, and bring them to Canada. What the pandemic showed us is that even having masks and PPEs could be strategic; in times of need, we couldn't get them, even from our friends.
I would look at the supply chain very carefully.
I would highly recommend that we consider other chip fabrication as the Achilles heel of this, both on the classical side, on CMOS, and also on the quantum side, which I think could be our niche in the global market. Right now, we are as competitive as any other country in building superconducting...or other types of quantum devices. This is the part I would recommend that the government take a very good look at and think about making a priority.
:
You raise a good point.
We talked earlier about the new investment fund offered by the Business Development Bank of Canada to support what companies call “deep tech companies”. We have benefited as a start‑up in this area. It's very interesting, but there is indeed a gap in Canada.
It was very important for us to join forces with this partner. These are people who think about long‑term solutions. Typically, a technology investment fund has a horizon of about 10 or 12 years. In the case of quantum technologies, you have to think about longer‑term solutions. This is what we would like to see emerging in Canada and, above all, at all levels in terms of funding.
For pre‑start‑up and start‑up companies, finding small‑scale funding isn't easy, but it's possible. The subsequent steps create greater challenges. Xanadu had done it, and we're very proud of them. This is a very good example of what can be done in Canada. This company has obviously received help from foreign investors. That's also the case for us, because we've had a European investor since day one.
Some form of support needs to be provided at all stages. It's important to think about solutions now, because these companies are currently growing.
:
Absolutely. I would say that, looking at my 20 years of being back in Canada, and looking at the students who are coming from the outside to Canada, things have been incredibly impressive. Interestingly—and maybe this is only one point of data among many—very few people from the United States would apply to do a Ph.D. at Waterloo in quantum information in 2002-03. Now, we're seeing a much larger number of 10% to 20% in some years.
We have definitely made a lot of progress, and I think that relates to the strength of quantum computing and the reputation that we built during that time.
To keep them around, I think my colleagues in the industry might want to put a little more worth on this. At the university, they come and they do a master's degree, a Ph.D. and sometimes a post-doctoral study, and then they have to move on. We don't keep them after that, and it's good for them to go and move [Technical difficulty—Editor] one location to the other.
In the start-up scene, certainly around Waterloo, I've seen many of the students worry about returning. I do not remember the number of years you have to be in Canada as a student to become a permanent resident, but I've seen many of them try to do this. This process is often cumbersome and hard, and maybe there are better ways to make it more fluid, so that colleagues in industry can hire these students more easily and get a better talent pool to develop quantum technology.
:
For the Department of National Defence, of course, given its mission, I think quantum computing would be disruptive to its business. Professor Laflamme mentioned the potential challenge that a quantum computer might pose in terms of encryption, and I echo his assessment.
I think a machine that can break encryption is a few years away, still at least a decade away. That doesn't mean a quantum computer's usefulness is so far away. We could have smaller-scale machines doing some other stuff that could be relevant to the Department of National Defence, but decryption is probably a bit of a longer time horizon here.
That said, the question is what type of post-quantum encryption algorithms we're going to adopt, because some of the information being exchanged right now throughout the government network probably has a shelf life of more than 10 to 20 years. You want to essentially secure them right now, because they could be collected by an adversary and sit in their storage for decryption whenever the quantum computer comes around.
Therefore, the sooner we can adopt the right technology to improve our encryption infrastructure, the better it is for the security of our country. Of course, access to hardware could, for example, be used to test some of these algorithms.
These are the areas that I think could be relevant to the mission of the Department of National Defence.
:
Maybe one difficulty that's really present here is that there is not one type of approach to quantum computing. We have three leading ones in photonics, trapped ions and superconducting. Two of them are represented here today. Really, there are probably another five that are getting started in labs around the world right now.
I would say the signal I would look for is, instead of focusing on raw qubit numbers today.... Any company you ask here and any one around the world, ranges from 10 to 150-200 qubits, but really we're talking about a machine with millions of qubits. There's a really big scaling issue from the technological side, to go from 10 to 1,000 to a million.
I would say, when you see the first signs of true fault tolerance coming from any one of these companies, and Dr. Laflamme is able to sit here and say they have demonstrated quantum error correction and fault tolerance, that's really the time to start getting excited that there's somebody who can deliver on this really big promise.
The other piece there is modularity. When we talk about these systems today, we're talking about individual chips with tens to hundreds of qubits. When you're talking about a machine that has a million qubits, this is a data centre. To give you an idea of the manufacturing scale, the prediction is that the number of chips you will need for a million-qubit device is probably similar to all the number of chips that are produced today in a year for the telecommunications industry, from at least the photonic side. This is really a big, 25,000-square-foot data centre that we're talking about. This is not a small device, so scalability, modularity and demonstration of error correction are really the big things.
One final thing—
:
The total adjustable market for quantum computing right now is estimated at $65 billion when we deliver a fault-tolerant quantum computer. I'd say that is the pessimistic estimate, compared to some of the other ones that have been out there.
I can't stress enough that when fault-tolerant quantum computing gets here, there will not be an industry that will not be disrupted by this. Every single thing that we know will change. It will take time for the applications to catch up, but this will be as revolutionary as digital computing was at its advent in the 1950s. The market is definitely there.
We've stood up quantum computers today. We've had six different quantum computers online since 2019, with users from large national labs in Canada and the U.S., and from corporations. Those are all kind of at that pre-fault tolerance, pre-economic value stage.
The R and D part is not the part that will take a billion dollars. We believe that we're well funded to take us well into building that fault-tolerant module, to being able to demonstrate and de-risk all the technology and all the science required to build a fault-tolerant quantum computer.
Once you need to build the machine that builds the machine, and once you need to switch modes from R and D into true manufacturing, that is a very large investment. You need to go to the largest production facilities in the world—the TSMCs, the GlobalFoundries, the Intels—and get their most advanced production lines producing these chips at scale and then integrating them. It's a very big task.
:
We hope that the national quantum strategy will be implemented soon.
Dr. Laflamme, research and development is normally carried out at universities, such as the University of Waterloo, the Université de Sherbrooke and Université Laval, in Quebec City.
Shouldn't government money go to universities? That's where the research and training is done. The government could then, in co‑operation with the National Research Council of Canada, or NRC, commercialize or allow the product to be commercialized, after listening to the solutions proposed by the Centres collégiaux de transfert de technologie au Québec, or CCTT.
We're talking today about three private entrepreneurs who are also looking for federal funding. If we had an amount to distribute, what percentage should go to universities for research, and what percentage should go to private companies?
:
Thank you very much, Chair, and I want to thank all the witnesses for coming today.
I took note of what Dr. Laflamme said, that Canada never missed an opportunity to miss an opportunity. I will memorize this as a reminder.
All my colleagues asked great questions, both today and the day before. I think now I'm more confused than before from the testimony. It's full of contradictions. I think, as with any new technology, that is actually a good thing. That will help the committee to come up with a study or recommendations that will be more comprehensive. I just feel for the analysts, who will be having trouble to put together a report.
Speaking of contradictions, I hear the explanation that it's not ready, yet it is ready. When I asked a question on Friday about the processor chip—we need to have a manufacturing capacity—I was also told that the computer processing hardware may be very different with quantum computing, so it's really hard to predict this. There is the contradiction there.
I will list a whole bunch of them, and you can explain it to me later.
In my head there is the supply chain aspect, including critical minerals that will provide the raw materials that are necessary for mass production, and then there is the manufacturing sector. To what stage should they be preparing for this disruptive technology? Then there's the research aspect of it, and we heard the testimony on this. The one contradiction was the receding globalization, but I also heard that it's necessary for Canadian researchers to work collaboratively with smart people around the world.
To me, these three main stages are full of contradictions.
I want to start with Mr. Laflamme, if you have any comment on this, and then go to Mr. Janik, Dr. Yazdi and Dr. St-Jean for comments.
:
Mr. Dong, it is a really good question, and you're absolutely right. There are contradictory forces or directions that come in. I could make a little joke that when you come into the quantum world, things appear very different from what you are expecting, and you can probably see a little of this coming through here.
Let's come back to interaction, internationally or not. [Technical Difficulty—Editor] pure research, fundamental research into this phenomenon. Can we harness this phenomenon for a practical purpose? If we just want to demonstrate proof of principle that this thing works, we publish our results in journals. That's how academics get rewards or fame; they publish a paper that makes a breakthrough and does something.
That piece of the research has to be international. You have to collaborate with the rest of the world. You gain something from the rest of the world, and the rest of the world gains something from you. In that sense, that piece has no kind of direction yet. This is really good.
Once you have an idea of how to build a device for practical things, suddenly you have to make a transition. Sometimes this happens in universities. A researcher at a university says, “Ah, we can patent this.” The researchers at the university have to be very agile in realizing that sometimes there are things that are purely fundamental, and their reward is fame.
Let's suppose they get a Nobel Prize for the work they have done. Suddenly, they realize that this thing becomes practical. Then they have to be quiet about it. They have to have a team, and they have to tell their team at some point that there are things they are to be very quiet about.
With my students, for example, there are things that I will not discuss outside of my group meeting, and the students know that certain things are not to be discussed until we do certain things with them, so there is this transition.
When you come to industry, suddenly you have a certain IP that protects what you want to have. Even that, with a company.... Again, Dr. Yazdi mentioned the chain of equipment that you need, certain pieces that you need. You don't build everything totally from scratch. He mentioned FPGAs. Suddenly you rely on the global trades around the world to provide some of these pieces, so you cannot be totally isolated. In fact, you should not be totally isolated because suddenly you will realize there are better ones than the one you knew about, and you learn about this from your colleagues around the world. Suddenly there is somebody who makes a little chip somewhere, let's say in Austria, in France, in the U.S. or in Taiwan, that helps you make a leap and control what you have in your lab better.
I want to return to the question of the private sector. With regard to young students in Canada who finish their education, are you getting many of those people coming forth?
In my office alone, I've had immigration staff. In 2002, I brought somebody in one day a week. They're up to four days a week right now, because of the processing. The government has a real problem, because it only allows five cases a day and I have 2,000, 3,000, or 4,000 cases.
I wonder whether or not you're getting young people who are foreign students and having issues in keeping them.
Maybe Mr. Janik can go first, and then we'll go from there.
:
This is an excellent question and very close to my heart. I am a first-generation immigrant; I came here to Canada to do my graduate work, and I stayed, so I relate to a lot of those young folks you talk about.
My comment is that in recent years, it's becoming a bit hard for people to stay in Canada, simply because, once they graduate, they still don't have any real status, any permanent status, in Canada. They have to apply for postgraduate work permits for only two years, and quite often the immigration process takes way more than two years. That's very stressful for many of these young talents, and they prefer to go to places that are either less stressful in terms of immigration or, if it's as stressful, at least the pay scale matches that stress.
I highly recommend that the government reconsider its immigration programs, at least on STEM—the science, technology, engineering and math fields—and make sure that before the student graduates as a Ph.D. or with a master's degree, they have their permanent residency in their pocket. That's the best way to guarantee that the talent we spend NSERC money on stays in Canada.
:
Ah, we're finally going to talk a bit about straight science and math.
[English]
The people who are doing algorithms classify them as two kinds: the easy one—the one that takes a very small amount of resources—and the hard one, which takes a large amount of resources. Of the two, if I want to be a bit more technical, one takes an exponential amount of resources compared to the other.
The algorithms that are resistant to quantum computers are the ones for which we haven't found a quantum algorithm that turns a hard problem into an easy one. The usual one, which is used for logging into your bank, called the RSA algorithm, is hard for a classical computer; that is, if you want to factor a large number with many bits in it, it takes an exponential number of time in the number of bits of the number that you want to factor.
We have a quantum algorithm that takes that algorithm to an easy one on a quantum computer, but there are other mathematical problems that are used to encrypt information that have remained hard on both a classical and a quantum computer.